
Informatics - The Science of Minimal Systems

with Maximal Complexity

Andreas Schwill
Institut für Informatik – Universität Potsdam

August-Bebel-Str. 89 – D-14482 Potsdam – Germany
Phone: +49-331-977-3100 – Fax: +49-331-977-3122

Web: www.informatikdidaktik.de
Email: schwill@cs.uni-potsdam.de

Keywords
fundamental ideas, curriculum research, minimalism, construction kit

Abstract
It is a fundamental idea of computer science to search for, define, analyze, and operate with construction kits
consisting of small sets of basic building blocks and a small number of operations to combine the building
blocks to larger objects. While the construction kit is mostly simple, it often defines a vast and very complex
field that consists of all possible objects that can be built from the building blocks by using any (finite)
sequence of combinations of operators.
This idea affects and structures many areas of computer science. We present examples from several fields,
among them are imperative and functional programming languages, computable functions, Turing and
register machines, Boolean functions, data types, object-oriented programming, characterizations of formal
languages along with examples from other disciplines.
How can informatics lessons profit from this observation? On the one hand, if lessons are oriented towards a
fundamental idea, the idea may explain, structure, and integrate many different informatics subjects and
phenomena by a single recurring scheme. On the other hand, since an idea like the construction kit principle
also belongs to the sphere of everyday thinking, students already have a basic intuition of the concept which
may enhance their understanding when entering any of the fields where the idea applies.

1 Introduction
In recent years we have elaborated the concept of fundamental ideas (originally

propagated by Bruner [Br60]) and made it accessible for informatics lessons. Here we

consider in more detail a selected idea from the collection of fundamental ideas of

computer science that we called orthogonalization and show that it has a wide area of

application and may guide many fields of school informatics.

By orthogonalization of a field ∆, following a term in linear algebra, we denote the

definition of a number of basic elements ∆e of the field along with a set K of operations

(K={K1,...,Kn}, n small) on the basis (s. Fig. 1), each as small and simple as possible,

such that every other object of the field may be generated by finitely many applications of

operations on the basic elements. So the result of orthogonalization is a minimal

generating system B=(∆e,K), i.e. a pair consisting of the basis and the operations, that

may be considered as a construction kit for the field.

2

We analyze the idea with respect to different didactic criteria and show the relevance of

the idea by presenting examples and applications in several areas of informatics as well

as in lessons.

∆
∆e

K i

K j

Fig. 1: Principle of construction kits

Throughout this paper we use the term complex to denote systems that are vast and

diverse in their inner structure, while we call descriptions of systems complicated if they

are vast and varied and hard to grasp. Obviously, there is no direct relation between the

complexity of a system and the complication of its description. While the system, in

particular, if it is a real life system, may be complex in nature, it may nevertheless have a

simple and short description. What we have to avoid under any circumstances are

complicated descriptions if the systems are simple, and what we have to search for are

descriptions as minimal as possible if the systems are complex in order to be able to

understand, master, or manage them.

2 Background
In 1960 J.S. Bruner [Br60] formulated the teaching principle that lessons should

predominantly orient towards the structure (the so-called fundamental ideas) of science.

In recent years we have adopted the concept, made it and the relevant notions precise

and transferred it to informatics lessons by defining fundamental ideas of informatics

(among them are algorithmization, structural dissection and (artificial) languages as well

as orthogonalization) and proposing lessons suitable for teaching certain ideas in

3

school. Here we only give a rough overview of the concept. For details the reader is

referred to [Sc93,Sc97].

We define a fundamental idea as: A schema for thinking, acting, describing or explaining

which satisfies four different criteria.

The Horizontal Criterion. A fundamental idea is applicable or observable in multiple

ways and in different areas of informatics. It organizes and integrates a wealth of

phenomena. For orthogonalization this criterion is shown in Section 4.

The Vertical Criterion. A fundamental idea may be demonstrated and taught on every

intellectual level following Bruner who said that "any subject can be taught effectively in

some intellectually honest form to any child at any stage of development". A central

methodical means guiding education of fundamental ideas on different levels is the

spiral principle also recommending three representations of concepts to be learned:

enactive on the lower level, iconic on a medium level, and symbolic on the highest level

of understanding. For orthogonalization this criterion is shortly motivated in Section 5.

The Criterion of Time. A fundamental idea can be clearly observed in the historical

development of computer science and will stay relevant in the future. This aspect is

important since lessons based on fundamental ideas will not become antiquated as

quickly as conventional lessons–a major advantage in teaching informatics with its

dynamic evolution.

The Criterion of Sense. A fundamental idea also has meaning in everyday life and is

related to ordinary language and thinking. Only a precise definition turns an idea "with

sense" into an exact concept "without sense". So, whenever we have to teach a

fundamental idea early in the student's schooling, we may give students a first

impression of the idea by using everyday situations as starting points for lessons. For the

idea of orthogonalization this criterion is made clear in Section 3.

3 Minimal Systems in Arts, Sciences, and Industry
Why do minimal systems in the form of construction kits play such an important role in all

kinds of arts, sciences, and industry? There may be two main reasons. The first one is

obviously an ecological/economical cause: Nature and industry develop evolutionary to

get the maximum result by spending a minimum of resources. The other one might come

from the limited capacity of the human brain, in particular of the short term memory, so

that concepts one works with have to have small descriptions to be manageable by

4

humans. Miller’s result on the short-term memory capacity of 7±2 chunks [Mi56] might be

a rough explanation for the fact that many minimal systems comprise less than 10 basic

elements and operations.

In the following we shortly present some minimal systems in arts, sciences, society, and

industry. These examples also verify the Criterion of Sense for orthogonalization.

Orthogonalization in industry

A modern example of industrial orthogonalization is Volkswagen's platform strategy

announced in 1997 [Se97]. By using only four platforms that contain 60% of the car's

parts, including the chassis, engine, brake system and gearbox Volkswagen wishes to

eventually produce 51 different models.

Further occurrences of orthogonalization may be found in concepts of lean management

or lean production.

Orthogonalization in society

An illustrating application of orthogonalization in public management is given by K.

Biedenkopf [Bi84]. The complexity of problems in a developed industrial society

permanently increases, e.g. in health, pension, tax, or unemployment systems. At the

same time, often much faster, the complication of methods, processes, and law

regulations grows in order to manage the increase in complexity. This leads to an

accelerating waste of financial, personal, and natural resources which eventually

produce almost no visible benefit for the public. Biedenkopf favors a reduction of the

complication of these methods and processes to a collection of few simple and clear, yet

powerful, social principles which may be arbitrarily combined and flexibly tailored to

upcoming social problems.

Orthogonalization in arts

Minimal art, a movement and style that came up in the 1960s, stresses the idea of

reducing art to a minimum number of elementary objects, such as colors, shapes, lines

and textures (sometimes called "primary structures"), that in creative formal combination

may produce a maximum of different pictures or sculptures. While traditional art uses an

analytical approach often attempting to represent real objects or experiences, minimal

5

art works constructively only producing artwork that can be generated by its "construction

kit".

Orthogonalization in music

Minimal music denotes a style that is likewise characterized by maximal simplicity and

reduction of the basic musical material, i.e. tones, rhythms, musical patterns, and

compositorial means. The major operations to create music from the basic material are

repetition of patterns, phase shifting, overlaying, stressing, adding single notes in order

to slightly change rhythms and sequences of tones over time. Although simple in its

underlying structure minimal music leads to a highly creative feeling of sound.

Minimal music has spread all over the world in the form of techno music and its branches

trance, house, and ambient stressing the beat and using repeating sound patterns and

rhythms to create hypnotic and ecstatic experiences.

Orthogonalization in linguistics

In his book U. Eco [Ec95] deals with the long-lasting search for a perfect language, a

universal language in which every object, thought, idea, feeling may be unambiguously

expressed. A typical orthogonalization approach is that of John Wilkins in the 17th

century. His "construction kit" consists of forty categories subdivided into 251 differences,

in turn subdivided into 2030 species. Each category was assigned a two-letter syllable,

each difference a consonant, and each species a vowel or diphthong. For example: de

stands for the category "element"; deb for the first of the elements, that is "fire"; deba for a

part of the element fire, a flame.

Orthogonalization in mathematics

Simple construction kits that generate highly complex fields arise in chaos theory.

Consider for example Julia sets that are generated by iteration of very simple functions f

in the complex plane such as

f: C→C defined by f(x)=x2+c where c is a constant.

For certain x either fn is bounded or unbounded, and the Julia set associated to f is

defined to be the set of complex values x where fn lies on the boundary.

6

By introducing Kolmogorov complexity [LV97] mathematics has formalized the notions of

complexity and complication of a system. For an object or system s we define the

Kolmogorov complexity C(s) to be the length (in bits) of the shortest algorithmic

description A of s. So by running the algorithm A of length C(s) A produces s.

On the one hand, an object may be regarded simple if its Kolmogorov complexity is

small, and systems are obviously complicated if their description is longer than

necessary, i.e. longer than C(s). Random objects, a random sequence s of bits, say, are

most complex because we are not able to find a description that is considerably shorter

than the object s itself. Rather every algorithm A has to contain and enumerate each and

every bit of the sequence and, thus, is about as long as the sequence itself, i.e. C(s)≈|s|.

4 Minimal Systems in Informatics
There are at least two approaches where orthogonalization conquers the methods of

informatics. The first one is the minimization of resources: sometimes using very

complicated ideas and constructions one tries to develop an algorithm that needs as little

time and storage as possible to solve a problem. The problem itself, however, is often

simple in structure and easy to understand. A typical example of this category is the

union-find-problem [Me84].

On the other hand there is the objective to minimize descriptions of systems, i.e. there

are approaches in computer science that either try to describe the most complex given

structures by concepts as simple and minimal as possible or, vice versa, try to define

very small orthogonal systems and then study the structures they generate. In the

following we will focus on the descriptional aspects of minimalism.

At first glance we may consider informatics as a science that has developed, or shall we

say adopted, the most beautiful minimal system that we may think of: 0 and 1. All

subjects of relevance are eventually mapped into a sequence of zeros and ones in order

to be executed by a digital computer.

But there are many more nice minimal systems. The systems we consider in the

following may be subdivided into two groups. One group contains minimal systems that

define the executing machine or parts or models of it.

The other group covers systems for modelling the real world by a computer program

consisting of data structures representing the static elements of the original and control

structures realizing its dynamic elements. For both parts of the model, but depending on

7

the underlying programming paradigm, informatics has defined fundamental minimal

systems in form of construction kits.

Orthogonalization in machines – register machines with 2 registers

The register machine (Fig. 2) is an automaton whose memory contains a fixed number,

say m, of registers each able to store an arbitrarily large natural number. The machine

can perform only three operations on a register: addition of 1, subtraction of 1 if the

register contains a number ≥1, and zero-test. A register machine program is a sequence

of statements of either

i: do f; goto j

or i: if t then goto j else goto k

where i and j are labels, f is an operation on a register, and t is the zero-test on a

register.

A register machine works as follows: At the beginning r≤m input values are stored in the

first r registers. All other registers are set to 0. Then the machine executes the program

beginning with statement labelled 0. The machine stops if it is to branch to an undefined

label. Then the contents of the first s≤m registers are considered as the output of the

machine. So the machine computes a function f: IN
0

r→IN
0

s
.

0: if R2=0 then goto 3 else goto 1;
1: do R1:=R1+1; goto 2;
2: do R2:=R2-1; goto 0

program storage

control
unit

R1

R2

R3

Rm

...

registers

Fig. 2: Register machine

This simple machine model is extremely powerful: one can show that a register machine

with only two registers is able to compute any computable function and so can simulate

any computer. The key idea is a clever coding of the storage into a single register. The

coding itself is an application of orthogonalization as well.

8

But orthogonalization does not stop here: a further step would be to reduce the number

of instructions leading to a single instruction computer with equivalent power whose only

instruction is

subtract 1 and jump to <label> if negative.

Orthogonalization in imperative programming – control structures

According to the observations above we can derive well-known construction kits for

imperative control structures. Each of the following pairs of basic elements and

operations forms a construction kit:

({assignment, goto}, {concatenation, if_then_else_fi})

or ({assignment}, {concatenation, while_do_od, if_then_else_fi})

but not ({assignment}, {concatenation, for_to_do_od, if_then_else_fi}).

With the last system we cannot program conditional loops.

The complexity of the system defined by these small construction kits may be best

experienced by the following program (x is of type integer):

read(x);

 while x>1 do

 if even(x) then x:=x/2 else x:=3*x+1 fi ;

 od ;

write("I am done").

The program implements the Collatz function (by L. Collatz, 1937), also known as 3x+1-

problem or Syracuse problem. For more than 60 years now it is unknown whether or not

the program terminates for all inputs.

Orthogonalization in functional programming – -calculus

Functional programming (with LISP, ML, Haskell or other languages) is based on the λ-

calculus, a mathematical formalism developed by A. Church in the 1930s to define and

use functions that are given by algorithms [Ba84]. The λ-calculus is a classical minimal

system that uses simple yet very powerful basic elements and operations.

Expressions in λ-calculus, so-called λ-terms, are defined inductively. Given a set of

variables X={x1,x2,x3,...}, then it holds:

1. Each variable x∈X is a λ-term (elementary λ-terms).

9

2. If M and N are λ-terms, then so is (MN). (MN) denotes the application of a λ-term M to

a λ-term N, usually written in the form M(N).

3. If x∈X is a variable and M is a λ-term, then (λx.M) is a λ-term. This rule describes

abstraction of a λ-term M to a function λx.M, where x is the formal parameter and M is

the function body. λ stands for the the keyword function in programming languages.

The dot separates function head and function body. As of programming languages

abstraction describes the parametrization of an expression like x+5 and transfer to a

function f(x)=x+5. Note that a λ-term is not identified by a name, so it has to be

completely written down wherever it is used.

Application of a λ-term to an argument is defined by the so-called β-rule which describes

the replacement of formal parameters by actual ones and is defined by

((λx.M)N)=M[x←N],

where we apply the function (λx.M) with formal parameter x and body M to an actual

parameter N. The rule says that the entire term may be replaced by M[x←N], that is the

term that is obtained by textually replacing parameter x by N everywhere in the body.

This rule excludes situations where M itself contains λ-abstractions, but for our purposes

here it is sufficient.

Examples:

1. (λx.z) defines a constant function, since for any y using the β-rule ((λx.z)y) may be

evaluated to z.

2. (λx.x) defines the identity function, since for any y using the β-rule ((λx.x)y) may be

evaluated to y.

Despite its extreme simplicity it has been shown by A. Church that λ-calculus is powerful

enough to describe all computable functions, i.e. λ-calculus may be considered a fully-

functional programming language. The proof is by simulation of register machines. For it

one has to encode natural numbers into λ-terms, then simulate the register operators +1

and -1, etc. A natural approach is to identify

0 by the λ-term (λf.(λx.x)),

1 by the λ-term (λf.(λx.(fx))),

2 by the λ-term (λf.(λx.(f(fx)))),

3 by the λ-term (λf.(λx.(f(f(fx))))) and so on.

Then we can define arithmetic operations by λ-terms, e.g. the successor function +1 on

natural numbers by

10

(λn.(λf.(λx.(f(n(fx)))))).

Orthogonalization in modelling – data types

The complex real world to be modelled by a software system usually consists of much

data in many different forms and representations. Surprisingly, informatics has

developed a method to cope with this bunch of unstructured data in a systematic way

using simple construction kits that allow any data to be described and eventually be

mapped into a computer.

The standard kit in programming languages is

({character, integer, real, boolean},

{aggregation, generalization, recursion, functional spaces})

and consists of the elementary data types character, integer, real and boolean and a number

of operations, so-called constructors, such as aggregation, generalization, recursion,

and construction of functional spaces (Fig. 3).

aggregation

generalization

recursion ...

Fig. 3: Effects of aggregation, generalization, and recursion

Further approaches of orthogonalization in informatics leading to minimal systems may

be observed in the following branches:

• the universal Turing machine may be considered the one-element basis of the class of

all Turing machines or even of the class of computable functions. The complexity of

11

Turing machines or computable functions in relation to their minimal basis is best

experienced by a Busy-Beaver-Turing machine;

• primitive-recursive and µ-recursive functions are defined inductively. There is a set of

basic functions, e.g. constant function, successor function, and a set of operations, e.g.

composition, µ-operator, that form a generating set for the class of primitive-recursive

and µ-recursive functions, respectively;

• object-oriented programming attempts to develop a collection of basic reusable

modules that may be configured for the concrete application area. Object-oriented

design uses design patterns (e.g. the model-view-controller pattern [Ga95]) that form

an abstract language to describe solutions to recurring object-oriented design

problems;

• programming languages are often designed according to the orthogonalization

principle. Very illustrating is a quote of B. Meyer [Me89] for motivating his conception

of the programming language Eiffel: "When there is one good way to express

something in Eiffel, there are often not two" (p. 37);

• fundamental basis of the set of Boolean functions and technical foundation of

computer systems are the function sets {and, or, not} or {and, not} or {nand} or {nor}. E.L.

Post and S.V. Yablonsky have found five simple criteria that the functions of a set have

to satisfy in order to define a generating set of all Boolean functions;

• it is attempted to develop construction kits for operating systems consisting of tiny,

highly modular and reusable components with well-defined operational behaviour

that may be configured and functionally enriched by minimal extensions according to

the future application area.

• homomorphisms, the bracket language and regular languages define a construction

kit for the class of context-free languages such that any context-free language may be

considered as a coding of correct bracket expressions with some regular languages in

between (Theorem of Chomsky and Schützenberger).

• In order to prove that a system is not orthogonal one often uses the idea of emulation:

Given a generating system, if one of the basic elements or operations may be realized

by the others then the system is not minimal.

12

5 Minimal Systems in Informatics Lessons
The above examples from informatics and other disciplines support the thesis that

orthogonalization is a fundamental idea of informatics that satisfies both the Horizontal

Criterion and the Criterion of Sense. If so the idea must be definitely integrated into

informatics lessons and taught in a way that makes visible its property of linking together

different informatics subjects and integrating diverse phenomena and methods under a

common concept.

To achieve this it is necessary to deal in school with orthogonalization and minimal

systems according to the following guidelines:

1. Orthogonalization has to be treated on every stage of intellectual development along

the spiral principle with increasing level of elaboration and formalization starting in

primary school.

2. One has to make clear where exactly the idea appears and applies in the concrete

subject and what advantage it gives for solving the problem.

3. It has to be explained in detail what the current minimal system is, what its basic

elements and operations are and how they work together.

4. One has to analyze in more or less detail the inner structure of the field the minimal

system defines.

5. One has to show how this approach and earlier applications of the idea in other

subjects coincide or differ.

The key concept is the Vertical Criterion that enables the idea to be taught on every

school level "in some intellectually honest form" and some examples mentioned above

may be reduced to the primary school level.

Also from the methodical point of view orthogonalization appears to be a precious

subject: Students usually have gained early experiences with construction kits in their

everyday life ("LEGO") and may easily grasp small systems with few orthogonal basic

elements and operations and, along constructivism, playfully experiment with basis and

operations and explore, maybe in projects, the space "spanned" by the construction kit

and experience its possibly vast complexity. Explanations of the teacher are hardly

necessary.

References
[Ba84] H.P. Barendregt: The Lambda calculus. North-Holland 1984
[Bi94] K. Biedenkopf: Komplexität und Kompliziertheit. Informatik Spektrum 17 (1994) 82-86
[Br60] J.S. Bruner: The process of education. Cambridge Mass. 1960

13

[Ec95] U. Eco: The search for the perfect language. Blackwell 1995
[Ga95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design patterns. Addison Wesley (1995)
[LV97] M. Li, P. Vitányi: An introduction to Kolmogorov complexity and its applications. Springer 1997
[Me84] K. Mehlhorn: Data structures and algorithms 1: Sorting and searching. Springer 1984
[Me95] W. Mertens: American minimal music. Pro AmMusic Resources 1995
[Me89] B. Meyer: From structured programming to object-oriented design: the road to Eiffel. Structured

Programming 1 (1989) 19-39
[Me01] J.S. Meyer: Minimalism: Art and polemics in the sixties. Yale Univ. Press 2001
[Mi56] G.A. Miller: The magical number seven plus or minus two: Some limits on our capacity for

processing information. Psychological Review 63 (1956) 81-97
[Sc93] A. Schwill: Fundamentale Ideen der Informatik. Zentralblatt für Didaktik der Mathematik 1 (1993) 20-

31
[Sc97] A. Schwill: Computer science education based on fundamental ideas. In: Information Technology -

Supporting change through teacher education (D. Passey, B. Samways, eds.), Chapman Hall
(1997) 285-291

[Se97] M.S. Serrill: Germany's new drive. Time Magazine 150,14 (1997)

